Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.01.29.23285160

ABSTRACT

Persistent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections may act as viral reservoirs that could seed future outbreaks 1-5, give rise to highly divergent lineages 6-8, and contribute to cases with post-acute Coronavirus disease 2019 (COVID-19) sequelae (Long Covid) 9,10. However, the population prevalence of persistent infections, their viral load kinetics, and evolutionary dynamics over the course of infections remain largely unknown. We identified 381 infections lasting at least 30 days, of which 54 lasted at least 60 days. These persistently infected individuals had more than 50% higher odds of self-reporting Long Covid compared to the infected controls, and we estimate that 0.09-0.5% of SARS-CoV-2 infections can become persistent and last for at least 60 days. In nearly 70% of the persistent infections we identified, there were long periods during which there were no consensus changes in virus sequences, consistent with prolonged presence of non-replicating virus. Our findings also suggest reinfections with the same major lineage are rare and that many persistent infections are characterised by relapsing viral load dynamics. Furthermore, we found a strong signal for positive selection during persistent infections, with multiple amino acid substitutions in the Spike and ORF1ab genes emerging independently in different individuals, including mutations that are lineage-defining for SARS-CoV-2 variants, at target sites for several monoclonal antibodies, and commonly found in immunocompromised patients 11-14. This work has significant implications for understanding and characterising SARS-CoV-2 infection, epidemiology, and evolution.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , COVID-19
2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.12.02.518847

ABSTRACT

In this study, we evaluated the impact of viral variant, in addition to other variables, on within-host viral burdens, by analysing cycle threshold (Ct) values derived from nose and throat swabs, collected as part of the UK COVID-19 Infection Survey. Because viral burden distributions determined from community survey data can be biased due to the impact of variant epidemiology on the time-since-infection of samples, we developed a method to explicitly adjust observed Ct value distributions to account for the expected bias. Analysing the adjusted Ct values using partial least squares regression, we found that among unvaccinated individuals with no known prior infection, the average Ct value was 0.94 lower among Alpha variant infections, compared those with the predecessor strain, B.1.177. However, among vaccinated individuals, it was 0.34 lower among Delta variant infections, compared to those with the Alpha variant. In addition, the average Ct value decreased by 0.20 for every 10 year age increment of the infected individual. In summary, within-host viral burdens are associated with age, in addition to the interplay of vaccination status and viral variant.


Subject(s)
COVID-19
3.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.06.13.22276319

ABSTRACT

Background: The management of Covid-19 outbreaks presented particular challenges in the prison setting. In this study we describe the results from the implementation of a serial mass testing approach in two adult prisons in northern England. The overall aim was to examine the epidemiology of Covid-19 outbreaks in prisons and help inform public health policy and practice during the pandemic. Methods: Repeat mass testing was offered to all eligible staff and residents in a women's (nresidents=239; nstaff=246) and a men's (nresidents=703; nstaff=340) prison in February and March 2021 at days 0, 7 and 28 after Covid-19 outbreaks were declared. Positive swab samples were sent for viral whole genome sequencing by COG-UK. Findings: Participation in at least one testing round ranged from a low of 67% of staff in the men's prison to a high of 98% of residents in the women's prison. The largest outbreak, in the men's prison (261 cases in residents and 37 cases in staff), continued to see new cases identified at the last testing round on day 28. Test positivity in residents of both prisons was significantly lower (p<0.05) at day 28 than on preceding test days, but no significant difference was observed for staff (p>0.05). Aggregate data from the women's prison indicated that approximately 30% of resident cases had Covid-19 symptoms when tested. Epidemiological data in conjunction with sequencing information provided evidence for multiple introductions of the SARS-CoV-2 virus from the local community into the prisons, with transmission identified both within wings and between wings among residents and staff. Two distinct SARS-CoV-2 lineages were identified in the women's and men's prisons, B.1.177 and B.1.17, respectively. Conclusions: During a Covid-19 outbreak, timely implementation of a whole prison testing regime can serve to inform a targeted approach to infection prevention and control by identifying the true extent of disease transmission in all (including asymptomatic) individuals. Staff, in particular, should be tested regularly and testing uptake should be as high as possible to minimise the risk of infection incursion. Ensuring high testing uptake across all testing rounds remains a challenge.


Subject(s)
COVID-19
4.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.05.25.22275435

ABSTRACT

Rationale Exhaled breath condensate (EBC) promises a valuable, non-invasive, and easy to obtain clinical sample. However, it is not currently used diagnostically due to poor reproducibility, sample contamination, and sample loss. Objective We evaluated whether a new, hand-held EBC collector (PBM-HALE™) that separates inertially impacted large droplets (LD) before condensing the fine aerosol (FA) fraction, in distinct self-sealing containers, overcomes current limitations. Methods Sampling consistency was determined in healthy volunteers by microbial culture, 16S phylogenetics, spectrophotometry, RT-PCR, and HILIC-MS. Capture of aerosolised polystyrene beads, liposomes, virus-like particles, or pseudotyped virus was analysed by nanoparticle tracking analysis, reporter expression assays, and flow cytometry. Acute symptomatic COVID-19 case tidal FA EBC viral load was quantified by RT-qPCR. Exhaled particles were counted by laser light scattering. Measurements and Main Results Salivary amylase-free FA EBC capture was linear (R 2 =0.9992; 0.25-30 min) yielding RNA (6.03 μg/mL) containing eukaryotic 18S rRNA (RT-qPCR; p<0.001) but not human GAPDH or beta actin mRNA, and 141 non-volatile metabolites including eukaryotic cell membrane components, and cuscohygrine 3 days after cocaine abuse. Culturable aerobe viability was condensation temperature-dependent. Breath fraction-specific microbiota were stable, identifying Streptococcus enrichment in a mild dry cough case. Nebulized pseudotyped virus infectivity loss <67% depended on condensation temperature, and particle charge-driven aggregation. No SARS-CoV-2 genomes were detected in convalescent or acute COVID-19 patient tidal breath FA EBC. Conclusions High purity alveolar fraction FA EBC can reproducibly and robustly inform on contamination-free infectious agent emission sources, and be quantitatively assayed for multiple host, microbial, and lifestyle biomarker classes.


Subject(s)
COVID-19 , Multiple Sclerosis
5.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.02.10.22270799

ABSTRACT

Introduction Viral sequencing of SARS-CoV-2 has been used for outbreak investigation, but there is limited evidence supporting routine use for infection prevention and control (IPC) within hospital settings. Methods We conducted a prospective non-randomised trial of sequencing at 14 acute UK hospital trusts. Sites each had a 4-week baseline data-collection period, followed by intervention periods comprising 8 weeks of 'rapid' (<48h) and 4 weeks of 'longer-turnaround' (5-10 day) sequencing using a sequence reporting tool (SRT). Data were collected on all hospital onset COVID-19 infections (HOCIs; detected [≥]48h from admission). The impact of the sequencing intervention on IPC knowledge and actions, and on incidence of probable/definite hospital-acquired infections (HAIs) was evaluated. Results A total of 2170 HOCI cases were recorded from October 2020-April 2021, with sequence reports returned for 650/1320 (49.2%) during intervention phases. We did not detect a statistically significant change in weekly incidence of HAIs in longer-turnaround (IRR 1.60, 95%CI 0.85-3.01; P=0.14) or rapid (0.85, 0.48-1.50; P=0.54) intervention phases compared to baseline phase. However, IPC practice was changed in 7.8% and 7.4% of all HOCI cases in rapid and longer-turnaround phases, respectively, and 17.2% and 11.6% of cases where the report was returned. In a per-protocol sensitivity analysis there was an impact on IPC actions in 20.7% of HOCI cases when the SRT report was returned within 5 days. Conclusion While we did not demonstrate a direct impact of sequencing on the incidence of nosocomial transmission, our results suggest that sequencing can inform IPC response to HOCIs, particularly when returned within 5 days.


Subject(s)
COVID-19
6.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.02.05.22269279

ABSTRACT

Background SARS-CoV-2 emerged in the UK in January 2020 and spread rapidly in different communities. The UK Government introduced a series of measures including national 'lockdowns' and regional 'tiers' to control virus transmission. As the outbreak continued, new variants were detected through two national disease monitoring programmes. Longitudinal records of their emergence and spread provide information with which we investigate factors affecting disease spread and the effectiveness of interventions. Methods We analysed the spatio-temporal dynamics of positive tests for COVID-19 on Teesside, UK throughout 2020. We investigated putative risk factors for infection, specifically, socio-economic deprivation, weather, and government interventions (lockdown). We used a combination of disease mapping and mixed-effect modelling to investigate the dynamics of positive tests from two sampling strategies and the spread of particular variants of the virus as they emerged on Teesside. Results SARS-CoV-2 spread was related to the extent of social deprivation, lockdown interventions and weather conditions over the period of the study. Cases in the first wave appeared to be associated with the first lockdown, but interventions had less impact on the second wave. Conclusions There was spatial and temporal heterogeneity in the distribution of different lineages, with spread faster in some lineages than others and varying across the region. Positive tests within region appeared to be related to levels of socio-economic deprivation. The interventions appeared to have different effects in the two waves of disease, and were associated with reduced numbers of records in the first wave, but having no effect during the second.


Subject(s)
COVID-19 , Sleep Deprivation
7.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.01.05.21268323

ABSTRACT

The Office for National Statistics COVID-19 Infection Survey is a large household-based surveillance study based in the United Kingdom. Here, we report on the epidemiological and evolutionary dynamics of SARS-CoV-2 determined by analysing sequenced samples collected up until 13th November 2021. We observed four distinct sweeps or partial-sweeps, by lineages B.1.177, B.1.1.7/Alpha, B.1.617.2/Delta, and finally AY.4.2, a sublineage of B.1.617.2, with each sweeping lineage having a distinct growth advantage compared to their predecessors. Evolution was characterised by steady rates of evolution and increasing diversity within lineages, but with step increases in divergence associated with each sweeping major lineage, leading to a faster overall rate of evolution and fluctuating levels of diversity. These observations highlight the value of viral sequencing integrated into community surveillance studies to monitor the viral epidemiology and evolution of SARS-CoV-2, and potentially other pathogens, particularly as routine PCR testing is phased out or in settings where large-scale sequencing is not feasible.


Subject(s)
COVID-19
8.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-991639.v1

ABSTRACT

Background: There is growing evidence that antibody responses play a role in the resolution of SARS-CoV-2 infection. Patients with primary or secondary antibody deficiency are at increased risk of persistent infection. This challenging clinical scenario is associated with adverse patient outcome and potentially creates an ecological niche for the evolution of novel SARS-CoV-2 variants with immune evasion capacity. Case reports and/or series have implied a therapeutic role for passive immunisation with convalescent plasma (CP) to secure virological clearance, although concerns have been raised about the effectiveness of CP and its potential to drive viral evolution, and it has largely been withdrawn from clinical use in the UK. Case presentation: We report two cases in which persistent SARS-CoV-2 infection was cleared following administration of the monoclonal antibody combination casirivimab and imdevimab (REGN-COV2, Ronapreve). A 55-year-old male with follicular lymphoma, treated with B cell depleting therapy, developed SARS-CoV-2 infection in September 2020 which then persisted for over 200 days. He was hospitalised on four occasions with COVID-19 and suffered debilitating fatigue and malaise throughout. There was no clinical response to antiviral therapy with remdesivir or CP, and SARS-CoV-2 was consistently detected in nasopharyngeal swabs. Intrahost evolution of several spike variants of uncertain significance was identified by viral sequence analysis. Delivery of REGN-COV2, in combination with remdesivir, was associated with clinical improvement and viral clearance within 6 days, which was sustained for over 150 days despite immunotherapy for relapsed follicular lymphoma. The second case, a 68-year-old female with chronic lymphocytic leukaemia on ibrutinib, also developed persistent SARS-CoV-2 infection. Despite a lack of response to remdesivir, infection promptly cleared following REGN-COV2 in combination with remdesivir, accompanied by resolution of inflammation and full clinical recovery that has been maintained for over 290 days. Conclusions These cases highlight the potential benefit of REGN-COV2 as therapy for persistent SARS-CoV-2 infection in antibody deficient individuals, including after failure of CP treatment. Formal clinical studies are warranted to assess the effectiveness of REGN-COV2 in antibody-deficient patients.


Subject(s)
Immunologic Deficiency Syndromes , Leukemia, Lymphocytic, Chronic, B-Cell , Convalescence , COVID-19 , Inflammation , Lymphoma, Follicular
SELECTION OF CITATIONS
SEARCH DETAIL